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Abstract

Conjugation coactions of the quantum general linear group on the algebra of quantum matrices
have been introduced in an earlier paper and the coinvariants have been determined. In this paper
the notion of orbit is considered via co-orbit maps associated withC-points of the space of quantum
matrices, mapping the coordinate ring of quantum matrices into the coordinate ring of the quantum
general linear group. The co-orbit maps are calculated explicitly for 2× 2 quantum matrices. For
quantum matrices of arbitrary size, it is shown that when the deformation parameter is transcendental
over the base field, then the kernel of the co-orbit map associated with aC-point ξ is a right ideal
generated by coinvariants, provided that the classical adjoint orbit ofξ is maximal. Ifξ is diagonal
with pairwise different eigenvalues, then the image of the co-orbit map coincides with the subalgebra
of coinvariants with respect to the left coaction of the diagonal quantum subgroup of the quantum
general linear group.
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1. Introduction

ConsiderO(Mq), the coordinate ring ofN × N quantum matrices overC, whereq is a
non-zero element ofC. Denote byO(GLq) the coordinate ring of the quantumGL(N,C)

(see[12]). Define the map

β : O(GLq) → O(GLq) ⊗O(GLq), β(h) =
∑

h2 ⊗ S(h1)h3, (1)

where we use Sweedler’s convention for the Hopf algebraO(GLq) (andS denotes the
antipode).

Similarly, set

α : O(GLq) → O(GLq) ⊗O(GLq), α(h) =
∑

h2 ⊗ h3S(h1).

Both α andβ are right coactions of the Hopf algebraO(GLq) on itself. Being the formal
dual of the right adjoint action,β is usually called the rightadjoint coactionof O(GLq).
Obviously,O(Mq) is a subcomodule ofO(GLq) with respect toα andβ, and we use the
same symbols to denote the restrictionsα : O(Mq) → O(Mq) ⊗ O(GLq), β : O(Mq) →
O(Mq)⊗O(GLq). These coactions can be viewed as quantum analogs of the adjoint action
of GL(N,C) on its Lie algebraM(N,C). The coinvariants with respect to these coactions
were described in[4].

Our aim here is to find a counterpart in the quantum setting of the notion of orbits of the
classical adjoint action. We summarize the results concerningβ, the case ofα being similar.
There is a natural way to associate with a “C-point ξ of the space ofN × N quantum
matrices” a morphismβξ : O(Mq) → O(GLq) of right O(GLq)-comodules (the right
coaction onO(Mq) is given byβ, whereas the right coaction onO(GLq) comes from the
comultiplication ofO(GLq)). Whenq is specialized to 1, the kernel ofβξ is the vanishing
ideal of the closure of the orbit ofξ, so the image ofβξ can be identified with the coordinate
ring of the closure of the orbit ofξ. Theq-deformed mapβξ is not an algebra homomorphism
since theβ is not an algebra homomorphism (see[4]). However, it turns out that the kernel
of βξ contains the right ideal ofO(Mq) generated by the elementsτi − τi(ξ), i = 1, . . . , N,
whereτ1, . . . , τN are the basic coinvariants forβ introduced in[4]. Whenξ is diagonal,
the image ofβξ is contained in the quantum quotient spaceO(D \ GLq), the subalgebra of
coinvariants of the left coaction of the diagonal quantum subgroupO(D) onO(GLq) (note
that in the classical caseq = 1,D is the stabilizer ofξ, provided thatξ has pairwise different
diagonal entries). In the special case whenN = 2 andq is not a root of unity, we are able
to show that althoughβξ is not an algebra homomorphism, it has further nice properties.
Namely, ifξ is diagonal, andξ is not a scalar multiple of any of the non-negative powers of
diag(q2,1), thenβξ is surjective ontoO(D \GLq). Moreover, for suchξ, the kernel ofβξ is
the right ideal ofO(Mq) generated by the elementsτ1 − τ1(ξ), τ2 − τ2(ξ), whereτ1, τ2 are
the basicβ-coinvariants from Domokos and Lenagan[4]; that is,τ1 = q−2x11 + q−4x22, a
weighted trace, andτ2 = x11x22 − qx12x21, the quantum determinant. Whenξ is a scalar
multiple of some non-negative power of diag(q2,1), then the kernel ofβξ is larger, and
the image is finite dimensional. In the final section we change the setup, and treatq as
an indeterminate over a subfield ofC. In this generic situation, both the kernel and the
image of the co-orbit map coincide with the subset predicted by the classical theory, for a
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ξ ∈ M(N,C) whose classical adjoint orbit is maximal. To be more precise, the kernel of the
co-orbit map is a right ideal generated by coinvariants, and ifξ is diagonal, then the image
of the co-orbit map is the subalgebra of coinvariants with respect to the left coaction of the
diagonal quantum subgroup. The present work can be viewed as a quantum version of some
of the basic results of Kostant[7] on the classical adjoint orbits of the general linear group
acting on its Lie algebra (which we use in our proof).

Recall thatO(Mq) is theC-algebra generated byN2 indeterminatesxij for i = 1, . . . , N,
subject to the following relations:

xijxil = qxilxij , xijxkj = qxkjxij , xilxkj = xkjxil ,

xijxkl − xklxij = (q − q−1)xilxkj (2)

for 1 ≤ i < k ≤ N and 1≤ j < l ≤ N, whereq ∈ C
∗. The algebraO(Mq) is an iterated

Ore extension, and so a noetherian domain. Thequantum determinant, detq, is the element

detq :=
∑
σ∈SN

(−q)l(σ)x1,σ(1) · · · xN,σ(N).

It is known that detq is a central element inO(Mq) (see[10, Theorem 4.6.1]), and by
adjoining its inverse we get thequantum general linear group

O(GLq) := O(Mq)[det−1
q ].

The algebraO(GLq) is a Hopf algebra withcomultiplication∆ andantipodeS. Recall
that ∆(xij ) = ∑N

k=1 xik ⊗ xkj. We shall need the explicit form ofS only in the special
caseN = 2, whenS(x11) = x22/detq, S(x22) = x11/detq, S(x12) = −q−1x12/detq,
S(x21) = −qx21/detq. The reader should be aware that in many papers the role ofq and
q−1 are interchanged, and so one has to be careful in translating results from one paper to
another. In the special caseq = 1, the algebraO(Mq) becomes the coordinate ringO(M)

of M(N,C), andO(GLq) becomes the coordinate ringO(GL) of GL(N,C).

2. Orbits of classical points

Start from the classical situation when we are given a (right) action

X × G → X, (x, g) �→ xg

of an affine algebraic groupG on an affine algebraic varietyX. The orbit of somex ∈ X is
the image of the composition of the morphisms

G → X × G → X, g �→ (x, g) �→ xg.

Passing to coordinate rings, the action is encoded in the comorphismµ : O(X) → O(X)⊗
O(G), which makesO(X) a rightO(G)-comodule algebra. The pointx corresponds to the
C-algebra homomorphism evx : O(X) → C, f �→ f(x). The comorphism of the orbit map
G → xG ⊂ X, g �→ xg is the composition

µx : O(X)
µ→O(X) ⊗O(G)

evx⊗id→ O(G).
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The kernel ofµx is the ideal of the (Zariski) closure of the orbitxG, and so the image ofµx

can be identified with the coordinate ring of the closure ofxG. Note thatµx : O(X) → O(G)

is an algebra homomorphism, as well as a morphism of rightO(G)-comodules (where the
right coaction ofO(G) on itself comes from the action ofG on itself by right translations).

Now assume in addition that the orbit ofx is closed in the Zariski topology ofX, and
denote byH the stabilizer ofx. ThenH acts by left translation onG, and the orbit map
G → xG factors through the quotient varietyH \ G, and induces an isomorphism of
theG-varietiesH \ G ∼= xG. In terms of coordinate rings this means that im(µx) is the
subalgebra ofO(H)-coinvariants inO(G) (the action ofH onG by left translations induces
a left coaction ofO(H) onO(G)).

Furthermore, ifG is reductive, thenO(X)G, the algebra of polynomial invariants (which
coincides with the algebra ofµ-coinvariants), is finitely generated as an algebra, say
f1, . . . , fs is a generating system. Assume in addition that the orbitxG is closed and max-
imal; that is,x is not contained in the closure of another orbit (note that for the adjoint
action ofGL(N,C) on its Lie algebraM(N,C) this holds for the generalx). Then ker(µx)

can be described in terms of polynomial invariants. In this case the common zero locus of
f1 − f1(x), . . . , fs − fs(x) is the orbitxG, so ker(µx) is the radical of the ideal generated
by f1 − f1(x), . . . , fs − fs(x).

Recall that

β = (id ⊗ p) ◦ (τ ⊗ id) ◦ (S ⊗ id ⊗ id) ◦ ∆(2) : O(GLq) → O(GLq) ⊗O(GLq),

where∆(2) = (∆⊗ id)◦∆ = (id⊗∆)◦∆, τ(h⊗k) = k⊗h, andp : O(GLq)⊗O(GLq) →
O(GLq) is the multiplication map. The corresponding formula forα is

α = (id ⊗ p) ◦ τ(132) ◦ (S ⊗ id ⊗ id) ◦ ∆(2),

whereτ(132)(h⊗k⊗l) = k⊗l⊗h. The above discussion on algebraic group actions motivates
the following definition. Take a surjectiveC-algebra homomorphism evξ : O(Mq) → C.
Theξ in the notation refers to theN×N matrix with complex entries obtained by evaluating
the given homomorphism on the generatorsxij ofO(Mq). Note that forξ ∈ M(N,C) there
is a corresponding homomorphism evξ if and only if ξ is a “quantum matrix” in the sense
of Manin [8]; that is, if the entries ofξ satisfy the relations definingO(Mq). We say thatξ
is aC-point ofMq in this case. Ifq �= 1, thenξ is aC-point ofMq if and only if there is
at most one non-zero entry in each column and each row ofξ, andξij ξkl �= 0 with i < k

implies thatj < l. For example, a diagonalξ satisfies this condition.

Definition 2.1. Let ξ be aC-point ofMq. Theco-orbit mapβξ of ξ with respect to the right
coactionβ is the composition(evξ ⊗ id) ◦ β, that is,

βξ : O(Mq)
β→O(Mq) ⊗O(GLq)

evξ⊗id→ O(GLq).

In the same manner,αξ is defined to be(evξ ⊗ id) ◦ α.

The above discussion suggests that the kernel of the co-orbit map should contain infor-
mation about the “embedding of the orbit intoMq”, and the image of the co-orbit map
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should determine the isomorphism type of (the closure of) the “orbit” as a quantum space.
The main point of this paper is that we treat the co-orbit map (and not only its image) as our
central object, and demonstrate that it has certain nice properties, even though we started
with a coaction which was not an algebra homomorphism. In particular, the coinvariants
are used to study the kernel of the co-orbit map.

Remark 2.2. Note thatDefinition 2.1makes sense ifβ is replaced by any right coactionν
of a Hopf algebraA on an associativeC-algebraR, and evξ is an algebra homomorphism
of R to C. Proposition 2.3clearly holds in this general setting. The mapνξ (andProposition
2.3) appears in[2,3] in the situation whenR is anA-comodule algebra. In this caseνξ

is an algebra homomorphism as well, and im(νξ) is a right coideal subalgebra ofA. A
right coideal subalgebra of a quantum group is called aquantum homogeneous space,
see[6,11.6.1]. So if A is a quantum group andR is a quantumA-space (that is,R is
anA-comodule algebra), then im(νξ) is a quantum homogeneous space. Moreover, any
quantum homogeneousA-space can be obtained as the image ofνξ for some classical point
ξ in some quantumA-space, see[3, Proposition 1.1]or [2, Proposition 3.2].

Proposition 2.3. The co-orbit mapβξ : O(Mq) → O(GLq) is a morphism of right
O(GLq)-comodules(given byβ and ∆, respectively). Similarly, αξ is a morphism of
O(GLq)-comodules(given byα and∆, respectively).

Proof. The claim is the equality∆ ◦ βξ = (βξ ⊗ id) ◦ β. Observe that∆ ◦ (evξ ⊗ id) =
(evξ ⊗ id ⊗ id) ◦ (id ⊗ ∆), because both are equal to evξ ⊗ ∆ : O(Mq) ⊗ O(GLq) →
O(GLq)⊗O(GLq). Sinceβ is a right coaction we have(id ⊗∆) ◦ β = (β⊗ id) ◦ β. Using
these two equalities, one gets

∆ ◦ βξ = ∆ ◦ (evξ ⊗ id) ◦ β = (evξ ⊗ id ⊗ id) ◦ (id ⊗ ∆) ◦ β

= (evξ ⊗ id ⊗ id) ◦ (β ⊗ id) ◦ β = (βξ ⊗ id) ◦ β. �

The spaces of coinvariants

O(Mq)
α−GLq := {f ∈ O(Mq)|α(f) = f ⊗ 1},

O(Mq)
β−GLq := {f ∈ O(Mq)|β(f) = f ⊗ 1}

are studied in[4]. It is shown there that althoughα andβ are not algebra homomorphisms,
nevertheless

α( fh) = α(f)α(h) if h ∈ O(Mq)
α−GLq , (3)

and similarly

β( fh) = β(f)β(h) if f ∈ O(Mq)
β−GLq . (4)

It follows thatO(Mq)
α−GLq andO(Mq)

β−GLq are subalgebras. Let us recall their generators.
Fix an integert with 1 ≤ t ≤ N. Let I andJ be subsets of{1, . . . , N} with |I| = |J | = t.
The subalgebra ofO(Mq) generated byxij with i ∈ I andj ∈ J can be regarded as an
algebra oft × t quantum matrices, and so we can calculate its quantum determinant—this
is a t × t quantum minorand we denote it by [I|J ]. The quantum minor [I|I] is said to
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be aprincipal quantum minor. We denote the sum of all the principal quantum minors of
a given sizei by σi. Note thatσ1 = x11 + · · · + xNN and thatσN = detq. It is shown in
[4] that theσi areα-coinvariants that pairwise commute, and ifq is not a root of unity,
thenO(Mq)

α−GLq = C[σ1, . . . , σN ], anN-variable commutative polynomial subalgebra
of O(Mq). For the coactionβ we have that theweighted sums of principal minorsτi :=∑

I q
−2w(I)[I|I] (herew(I) denotes the sum of the elements ofI, and the summation ranges

over all subsetsI of sizei), i = 1, . . . , N, are pairwise commutingβ-coinvariants. Moreover,
assuming again thatq is not a root of unity,O(Mq)

β−GLq = C[τ1, . . . , τN ], theN-variable
commutative polynomial subalgebra generated by theτi.

We shall writef(ξ) for evξ(f), wheref ∈ O(Mq) andξ is aC-point ofMq.

Proposition 2.4. The kernel ofβξ contains the right ideals

∑
f∈O(Mq)

β−GLq

(f − f(ξ))O(Mq) ⊇
N∑
i=1

(τi − τi(ξ))O(Mq).

If q is not a root of unity(or q = 1), then the latter two right ideals are equal. The kernel
of αξ contains the left ideals

∑
f∈O(Mq)

α−GLq

O(Mq)(f − f(ξ)) ⊇
N∑
i=1

O(Mq)(σi − σi(ξ)).

If q is not a root of unity(or q = 1), then the latter two left ideals are equal.

Proof. If f ∈ O(Mq)
β−GLq , thenβξ(f) = (evξ⊗id)(β(f)) = (evξ⊗id)(f⊗1) = f(ξ)·1 ∈

O(Mq), hencef −f(ξ) ∈ ker(βξ). By formula(4) then(f −f(ξ))O(Mq) ⊆ ker(βξ). Note
that τi areβ-coinvariants, and ifq is not a root of unity, they generateO(Mq)

β−GLq by
[4]. Hence in the latter case the elementsτi − τi(ξ) generate the same right ideal within
O(Mq)

β−GLq as all thef − f(ξ) with f ∈ O(Mq)
β−GLq .

The same argument works forα. �

Remark 2.5. More is known in the classical caseq = 1. If the adjoint orbit ofξ ∈ M(N,C)

is maximal, then ker(βξ), the vanishing ideal of the closure of the orbit ofξ, is generated
by τi − τi(ξ) (i = 1, . . . , N); this is proved in[7, Theorem 10], considering more generally
the adjoint action on reductive Lie algebras.

The coordinate Hopf algebraO(D) of the diagonal subgroupD of GL(N,C) is the
commutative algebraC[t1, t

−1
1 , . . . , tN, t

−1
N ] of Laurent polynomials with comultiplication

∆(ti) = ti ⊗ ti and counitε(ti) = 1. There exists a surjective Hopf algebra homomorphism
πD : O(GLq) → O(D) determined byπD(xij ) = δij ti, i, j = 1, . . . , N. Therefore we say
thatD is a quantum subgroup ofGLq, called thediagonal subgroup.

There is a natural left coactionλD := (πD ⊗ id) ◦∆ ofO(D) onO(GLq). The subset of
λD-coinvariants is denoted by

O(D \ GLq) = {f ∈ O(GLq)|λD(f) = 1 ⊗ f }.
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This is a subalgebra (sinceO(GLq) is a comodule algebra with respect toλD), as well as
a rightO(GLq)-subcomodule (sinceλD commutes with the right coaction ofO(GLq) on
itself). SoO(D \ GLq) is the coordinate algebra of a quantum homogeneous spacein the
sense of Klimyk and Schmüdgen[6, 11.6.1]. This quantum homogeneous space is often
called thequantum quotient spaceD\Gq, because it arises as the subalgebra of coinvariants
with respect to the coaction of a quantum subgroup.

Recall that in the classical caseq = 1, the subgroupD is the stabilizer ofξ, provided that
ξ is a diagonal matrix with pairwise different eigenvalues, and the orbit of a diagonalξ is
closed inO(M(N,C)). Hence for suchξ, the coordinate ring of the orbit ofξ isO(D \G1).
A partial analog of this holds for anyq.

Proposition 2.6. Let ξ be a diagonalN × N matrix with complex entries. Then the image
of βξ is contained inO(D \ GLq). Similarly we haveim(αξ) ⊆ O(D \ GLq).

Proof. The restriction ofπD to O(Mq) is denoted byπC, it mapsO(Mq) ontoO(C) =
C[t1, . . . , tN ]. By our assumption onξ the homomorphism evξ : O(Mq) → C factors
throughπC, we write evξ also for the homomorphismO(C) → C, ti �→ ξii .

By definitionβξ is the composition

βξ : O(Mq)
β→O(Mq) ⊗O(GLq)

πC⊗id→ O(C) ⊗O(GLq)
evξ⊗id→ O(GLq), (5)

andλD is the composition

λD : O(GLq)
∆→O(GLq) ⊗O(GLq)

πD⊗id→ O(D) ⊗O(GLq).

By linearity of (πD ⊗ id) ⊗ ∆ we have

(πD ⊗ id) ◦ ∆ ◦ (evξ ⊗ id) = (evξ ⊗ id ⊗ id) ◦ (id ⊗ πD ⊗ id) ◦ (id ⊗ ∆)

as mapsO(C) ⊗O(GLq) → O(D) ⊗O(GLq). Thus,

(πD ⊗ id) ◦ ∆ ◦ (evξ ⊗ id) ◦ (πC ⊗ id)

= (evξ ⊗ id ⊗ id) ◦ (πC ⊗ πD ⊗ id) ◦ (id ⊗ ∆)

as mapsO(Mq) ⊗O(GLq) → O(D) ⊗O(GLq). Therefore we have

λD ◦ βξ = (evξ ⊗ id ⊗ id) ◦ (πC ⊗ πD ⊗ id) ◦ (id ⊗ ∆) ◦ β

= (evξ ⊗ id ⊗ id) ◦ (πC ⊗ πD ⊗ id) ◦ (β ⊗ id) ◦ β

(in the second equality we use the fact thatO(Mq) is a rightO(GLq)-comodule under
β). Note that the formula(1) makes sense if we replaceO(GLq) by any Hopf alge-
bra, in particular, it defines a right coactionβD : O(D) → O(D) ⊗ O(D). SinceπD

is a Hopf algebra homomorphism, we haveβD ◦ πD = (πD ⊗ πD) ◦ β. On the other
hand,βD is equal to the trivial corepresentation id⊗ 1, since it is the comorphism of
the conjugation action ofD on itself, which is trivial. It follows that(πC ⊗ πD) ◦ β =
(id ⊗ 1) ◦ πC : O(Mq) → O(C) ⊗ O(D), and henceλD ◦ βξ can be written as the
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composition

O(Mq)
(πC⊗id)◦β→ O(C) ⊗O(GLq)

(id⊗1)⊗id→ O(C) ⊗O(D) ⊗O(GLq)
evξ⊗id⊗id→ O(D) ⊗O(GLq). (6)

In order to prove our proposition we need to show that for allf ∈ O(Mq) the equality
λD(β

ξ(f)) = 1 ⊗ βξ(f) holds. Write(πD ⊗ id)(β(f)) as
∑

i ai ⊗ bi, whereai ∈ O(C)
and bi ∈ O(GLq). Thenβξ(f) = ∑

i evξ(ai)bi by (5). Therefore, using(6), we have
λD(β

ξ(f)) = ∑
i evξ(ai)1 ⊗ bi = 1 ⊗∑

i evξ(ai)bi = 1 ⊗ βξ(f). �

3. Co-orbit maps of 2 × 2 quantum matrices

In the special caseN = 2 andq not a root of unity (orq = 1) we are able to refine
Propositions 2.4 and 2.6. Throughout this section we assume thatN = 2,O(Mq),O(GLq)
denote the coordinate rings of 2× 2 quantum matrices and quantumGL(2), andO(D) =
C[t±1

1 , t±1
2 ]. We will see in the proof ofLemma 3.4that as an algebraO(D\GLq) is generated

byx11x21/detq,x12x21/detq,x12x22/detq. We writeO(D\GLq)≤m for the subspace spanned
by products of length at mostm in these generators.

Proposition 3.1. Assume thatq is not a root of unity(or q = 1), and take

ξ :=
[
ξ1 0

0 ξ2

]
.

(i) If ξ1 − q2kξ2 �= 0 for k = 0,1,2, . . . , thenim(βξ) = O(D \ GLq).
(ii) If ξ1 − ξ2, ξ1 − q2ξ2, . . . , ξ1 − q2m−2ξ2 are non-zero andξ1 − q2mξ2 = 0, then

im(βξ) = O(D \ GLq)≤m.
(iii) If ξ1 − q2kξ2 �= 0 for k = 0,1,2, . . . , thenker(βξ) = ∑2

i=1(τi − τi(ξ))O(Mq).
(iv) If ξ1 − ξ2, ξ1 − q2ξ2, . . . , ξ1 − q2m−2ξ2 are non-zero andξ1 − q2mξ2 = 0, then

ker(βξ) is the sum of
∑2

i=1(τi − τi(ξ))O(Mq) and theO(GLq)-comodule generated
by {xk21|k > m}:

(i′) If ξ1 − q−2kξ2 �= 0 for k = 1,2, . . . , thenim(αξ) = O(D \ GLq).
(ii ′) If ξ1 − q−2ξ2, . . . , ξ1 − q−2mξ2 are non-zero andξ1 − q−2m−2ξ2 = 0, thenim(αξ) =
O(D \ GLq)≤m.

(iii ′) If ξ1 − q−2kξ2 �= 0 for k = 1,2, . . . , thenker(αξ) = ∑2
i=1O(Mq)(σi − σi(ξ)).

(iv′) If ξ1−q−2ξ2, . . . , ξ1−q−2mξ2 are non-zero andξ1−q−2m−2ξ2 = 0,thenker(αξ) is the
sum of

∑2
i=1O(Mq)(σi − σi(ξ)) and the O(GLq)-comodule generated by

{xk21|k > m}.

As an immediate corollary we obtain the following.

Theorem 3.2. Assume thatq is not a root of unity(or q = 1) and take a diagonal complex
matrix ξ which is not a scalar multiple of any integral power of
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q2 0

0 1

]
.

Then bothβξ andαξ mapO(Mq) surjectively ontoO(D \ GLq). In particular, im(βξ) =
im(αξ) is a quantum homogeneous space. Moreover, the kernel ofβξ is the right ideal of
O(Mq) generated by theβ-coinvariantsτ1 − τ1(ξ), τ2 − τ2(ξ). The kernel ofαξ is the left
ideal ofO(Mq) generated byσ1 − σ1(ξ), σ2 − σ2(ξ).

Remark 3.3. In some sense the mapβξ (respectively,αξ) is the best possible we can
hope for. Suppose thatϕ : O(Mq) → O(D \ GLq) is a map which is both aC-algebra
homomorphism and intertwines between theO(GLq)-corepresentationsβ and∆. Then
kerϕ is a completely prime two-sided ideal inO(Mq), sinceO(D \ GLq) is a domain.
We shall see below that the trivialO(GLq)-corepresentation appears with multiplicity 1 in
O(D \ GLq). Therefore ker(ϕ) must containτ1 − λ1 andτ2 − λ2 with someλ1, λ2 ∈ C.
Elementary commutator computations (exploiting the fact thatτ1 is non-central) show that
ϕ(x12) = ϕ(x21) = 0, ϕ(x11) ∈ C, andϕ(x22) ∈ C. In particular, im(ϕ) = C for anyϕ
compatible with both the algebra and comodule structures.

It will be convenient for the proof ofProposition 3.1to pass fromO(GLq) to O(SLq),
the Hopf algebra quotient ofO(GLq) modulo the ideal generated by detq − 1. We keep the
symbol∆ to denote the comultiplication inO(SLq). Denote byπ the natural epimorphism
π : O(GLq) → O(SLq), anda := π(x11), b := π(x12), c := π(x21), d := π(x22). The
groupK of diagonal matrices inSL(2,C) is a quantum subgroup ofO(SLq) with surjective
Hopf algebra homomorphismπK : O(SLq) → O(K) = C[z±1] given by πK(a) = z,
πK(b) = 0 = πK(c),πK(d) = z−1. There is a natural left coactionλK := (πK⊗ id)◦∆ and
a right coactionρK := (id⊗πK)◦∆ofO(K)onO(SLq). The subalgebra ofλK-coinvariants
is denoted byO(K \ SLq).

We shall use the corepresentation theory ofO(SLq), the material below can be found,
for example in[6, 4.2]. We assume thatq is not a root of unity (orq = 1). ThenO(SLq)
is cosemisimple, so anyO(SLq)-comodule decomposes as the direct sum of irreducible
subcomodules. The degreen homogeneous componentPn (n ∈ N0 := N ∪ {0}) of
the subalgebraC〈a, b〉 of O(SLq) is an (n + 1)-dimensional rightO(SLq)-subcomodule.
Denote the corresponding corepresentation byTn/2. ThenTl : P2l → P2l ⊗ O(SLq),
l ∈ (1/2)N0, is a complete list of irreducible corepresentations ofO(SLq) up to iso-
morphism, see, for example[6, 4.2.1]. We adopt the following notation: ifT : V →
V ⊗ O(SLq) is a corepresentation ofO(SLq), then writeV [n] := {v ∈ V |(id ⊗ πK) ◦
T(v) = v ⊗ zn}, wheren ∈ Z. Since anyO(K)-comodule decomposes as a direct sum
of one-dimensionalO(K)-subcomodules, the comoduleV decomposes as⊕n∈ZV [n]. As-
sume thatV is finite dimensional. By thecharacterχ(T) of T we meanπK(f), where
f ∈ O(SLq) is the sum of the diagonal matrix elements ofT with respect to an arbitrar-
ily chosen basis ofV . In other words,χ(T) = ∑

n∈Z dimC(V [n])zn ∈ O(K). (Note that
our use of the word ‘character’ slightly differs from that of Klimyk and Schmüdgen[6,
11.2.2], wheref is called the character ofT , andχ(T) = πK(f) the character of the
O(K)-corepresentation(id ⊗πK)◦T ). For the irreducibleO(SLq)-corepresentationsTl we



456 M. Domokos et al. / Journal of Geometry and Physics 47 (2003) 447–468

have that

dim(P2l[n]) =
{

1 if n = 2l,2l − 2,2l − 4, . . . ,−2l,

0 otherwise,

so χ(Tl) = zl + zl−2 + · · · + z−l. In particular, the set{χ(Tl)|l ∈ (1/2)N0} is linearly
independent, and the multiplicity ofTj as a direct summand ofT equals the coefficient of
χ(Tj) in χ(T), expressed as a linear combination of the elementsχ(Tl).

The quantum quotient spaceO(S2
q,∞) := O(K \SLq) is a well-studied object, belonging

to the one-parameter family ofquantum2-spheresintroduced in[11]. The facts we need
aboutO(S2

q,∞) can be found in[6, 4.5]. As a subalgebra ofO(SLq), the quantum 2-sphere

O(S2
q,∞) is generated by the elements

x−1 := (1 + q2)1/2ac, x0 := 1 + (q + q−1)bc, x+1 := (1 + q2)1/2db.

The rightO(SLq)-corepresentation onO(S2
q,∞) is isomorphic toT0 ⊕ T1 ⊕ T2 ⊕ · · · . The

linear span of the products of length at mostn in the generatorsx−1, x0, x+1, denoted
by Wn, is a rightO(SLq)-subcomodule. The corepresentation onWn is isomorphic to
⊕n

l=0Tl. Moreover, the simple subcomodule ofWn corresponding to the summandTn is the
subcomodule generated byxn−1, becauseWn[2n] = Cxn−1 andWn[d] = 0 if d > 2n. In
particular, as anO(SLq)-comoduleO(S2

q,∞) is generated by the powers ofx−1.
The reason that we are able to switch fromO(GLq) toO(SLq) is in the following lemma.

Lemma 3.4. The restriction ofπ mapsO(D \ GLq) isomorphically ontoO(K \ SLq).

Proof. The coactionλD defines aZ ⊕ Z-grading onO(GLq): for (m, n) ∈ Z
2 set

O(GLq)(m,n) := {f ∈ O(GLq)|λD(f) = tm1 tn2 ⊗ f },
thenO(GLq) = ⊕(m,n)∈Z2O(GLq)(m,n). By definitionO(D \ GLq) = O(GLq)(0,0). For the
algebra generators ofO(GLq) we havex11, x12 ∈ O(GLq)(1,0), x21, x22 ∈ O(GLq)(0,1),
and det−1

q ∈ O(GLq)(−1,−1). ThereforeO(D \ GLq) containsx11x21/detq, x12x21/detq,
x12x22/detq. These elements are mapped viaπ onto a system of algebra generators of
O(K \ SLq).

Since detq − 1 is not homogeneous with respect to thisZ
2-grading andO(GLq) is a

domain, we have that ker(π) = (detq − 1)O(GLq) does not contain any homogeneous
elements. In particular, the kernel ofπ is disjoint fromO(D \ GLq). �

TheO(GLq)-coactionβ is replaced by theO(SLq)-coaction

ψ := (id ⊗ π) ◦ β : O(Mq) → O(Mq) ⊗O(SLq),

andα is replaced by

ϕ := (id ⊗ π) ◦ α : O(Mq) → O(Mq) ⊗O(SLq).

For ξ a C-point of Mq the mapsψξ, ϕξ : O(Mq) → O(SLq) are defined in an obvious
way: ψξ = (evξ ⊗ id) ◦ ψ = π ◦ βξ andϕξ = (evξ ⊗ id) ◦ α = π ◦ αξ. Propositions



M. Domokos et al. / Journal of Geometry and Physics 47 (2003) 447–468 457

2.3 and 2.6 combined withLemma 3.4translate to the following. The mapψξ inter-
twines between theO(SLq)-corepresentationsψ and∆, whereasϕξ intertwines between the
O(SLq)-corepresentationsϕand∆. We have that ker(ψξ) = ker(βξ)and ker(ϕξ) = ker(αξ).
If ξ is diagonal then im(ψξ) ⊆ O(K\SLq)with equality if and only if im(βξ) = O(D\GLq),
and im(ϕξ) ⊆ O(K \ SLq) with equality if and only if im(αξ) = O(D \ GLq). Moreover,
im(βξ) = (O(D \ GLq))≤n if and only if im(ψξ) = Wn, and im(αξ) = (O(D \ GLq))≤n if
and only if im(ϕξ) = Wn.

Proof of Proposition 3.1. The kernel of ψξ contains
∑2

i=1(τi − τi(ξ))O(Mq) by
Proposition 2.4, thereforeψξ factors through the composition of the natural homomor-
phisms

O(Mq)
µ→C

η→B,

whereC := O(Mq)/(τ2 − τ2(ξ))O(Mq), B := C/uC with u := µ(τ1 − τ1(ξ)). Setyij :=
µ(xij ). Note thatτ2 − τ2(ξ) = detq − ξ1ξ2 is a central element inO(Mq), soC is a quotient
algebra ofO(Mq). It is a domain by Jordan[5]. Sinceτ2 − τ2(ξ) is aψ-coinvariant,(τ2 −
τ2(ξ))O(Mq) is a subcomodule ofO(Mq) by (4), henceC is a factorcomodule ofO(Mq);
the corresponding corepresentation is denoted byψC. Similarly,B is a factorcomodule of
C, with corepresentationψB. Our next aim is to show that

ψB
∼= T0 ⊕ T1 ⊕ T2 ⊕ · · · , (7)

and moreover that,η(y21)
r generates the simple subcomodule ofB corresponding toTr for

r ∈ N0.
Denote byO(Mq)

≤r the linear span of monomials of degree≤ r in the generatorsxij ,
andCr := µ(O(Mq)

≤r), Br := η(Cr). Note thatO(Mq)
≤r, Cr, Br are subcomodules. The

symbolsψCr , ψBr stand for the obvious subcorepresentations ofψC, ψB.
For r ∈ N0, a vector space basis ofCr is

{yi+1
11 y

j

12y
k
21, y

l
12y

m
21y

n
22|i, j, k, l, m, n ∈ N0, i + j + k ≤ r − 1, l + m + n ≤ r} (8)

(by the same argument as the corresponding result forO(SLq) is proved in[6, 4.1.5]). From
(8) we see that the character of the corepresentationψCr is

χ(ψCr ) =
∑

i+j+k≤r−1

z2(k−j) +
∑

l+m+n≤r

z2(m−l). (9)

(This character does not depend onq or ξ.) In particular,Cr[n] = 0 if n > 2r, and
Cr[2r] = Cyr21, implying that the corepresentationψCr has a unique irreducible summand
isomorphic toTr, andyr21 generates the corresponding simple subcomodule ofCr. It follows
thatη(yr21) is either zero, or it generates a simple subcomodule ofB, on which the given
corepresentation is isomorphic toTr.

In order to show thatη(yr21) is non-zero, we introduce aZ-grading deg onO(Mq) as
follows: deg(x11) := 1, deg(x22) := −1, deg(x12) := 0, deg(x21) := 0. It is easy to check
that deg extends to an algebra-grading ofO(Mq). Moreover, ker(µ) is a homogeneous ideal,
soC inherits the grading. Note thatu is non-homogeneous, and deg(yr21) = 0. SinceC is a
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domain, any non-zero multiple ofu is non-homogeneous. Thusyr21 is not contained inuC.
In other words,η(yr21) is non-zero for anyr ∈ N0.

Consequently,ψBr contains a subcorepresentation isomorphic toT0⊕T1⊕· · ·⊕Tr, on the
subcomodule generated by 1, η(y21), . . . , η(y

r
21). On the other hand, ker(η)∩Cr = uC∩Cr

clearly containsuCr−1, soBr is a factorcomodule ofCr/uCr−1. Sinceu is a coinvariant
andC is a domain, by(4) we get that the corepresentation onuCr−1 is isomorphic toψCr−1,
hence the character of the corepresentation onCr/uCr−1 is χ(ψCr ) − χ(ψCr−1). Using(9)
we get that

χ(ψCr ) − χ(ψCr−1) =
∑

i+j+k=r−1

z2(k−j) +
∑

l+m+n=r

z2(m−l)

=
∑

j+k≤r−1

z2(k−j) +
∑

l+m≤r

z2(m−l) =
r∑

s=0

χ(Ts). (10)

So the corepresentation onCr/uCr−1 is also isomorphic to⊕r
s=0Tr. It follows thatCr∩uC =

uCr−1, andψBr ∼= ⊕r
s=0Tr. Moreover, the subcomodule corresponding toTs is generated

by η(ys21). This shows(7), sinceB = ⋃∞
r=0 B

r.
As an immediate consequence of(7)and the fact thatψξ = ν◦η◦µ for some morphismν :

B → O(S2
q,∞)of comodules, we obtain that the image ofψξ is the subcomodule ofO(S2

q,∞)

generated by{ν(η(yn21))|n ∈ N0} = {ψξ(xn21)|n ∈ N0}. Moreover, the kernel ofψξ is
(η ◦ µ)−1(ker(ν)). By (7) B is the direct sum of pairwise non-isomorphic simple subco-
modules, and so any subcomodule is a direct sum of some of these simple subcomodules;
in particular, ker(ν) is theO(SLq)-subcomodule ofB generated by{η(yn21)|ν(η(yn21)) = 0}.
Therefore(η ◦ µ)−1(ker(ν)) is the sum of ker(η ◦ µ) = ∑

i=1,2(τi − τi(ξ))O(Mq) and the
subcomodule ofO(Mq) generated by{xn21|ψξ(xn21) = 0}. So (i)–(iv) follow from the fact
thatWn ≤ O(S2

q,∞) is generated by{xr−1|r = 0,1, . . . , n} as anO(SLq)-comodule, and

from the evaluation ofψξ(xn21) given below.
Sinceψξ is not an algebra homomorphism, it is helpful to write it as the composition

ψξ = p ◦ Ψ , whereΨ is the map

Ψ := ((S ◦ π) ⊗ evξ ⊗ π) ◦ ∆(2) : O(Mq) → O(SLq) ⊗O(SLq),

andp : O(SLq) ⊗ O(SLq) → O(SLq) is the multiplication map inO(SLq). Introduce a
new multiplication∗ onO(SLq) ⊗O(SLq) given by(x1 ⊗ y1) ∗ (x2 ⊗ y2) = x2x1 ⊗ y1y2.
Observe thatΨ is an algebra homomorphism fromO(Mq) to (O(SLq) ⊗ O(SLq), ∗). We
have that

Ψ

[
x11 x12

x21 x22

]
=
[
ξ1d ⊗ a − q−1ξ2b ⊗ c ξ1d ⊗ b − q−1ξ2b ⊗ d

−qξ1c ⊗ a + ξ2a ⊗ c −qξ1c ⊗ b + ξ2a ⊗ d

]
. (11)

By induction onn we show that

ψξ(xn21) = (−q)n(ξ1 − ξ2)(ξ1 − q2ξ2) · · · (ξ1 − q2n−2ξ2)c
nan. (12)
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Indeed,(12)holds forn = 1 by (11). Assume that(12)holds forn. Then

ψξ(xn+1
21 ) = p(Ψ(xn+1

21 )) = p(Ψ(xn21) ∗ Ψ(x21))

= p(Ψ(xn21) ∗ (−qξ1c ⊗ a + ξ2a ⊗ c))

= −qξ1cp(Ψ(xn21))a + ξ2ap(Ψ(xn21))c = (−qξ1 + q2n+1ξ2)cψ
ξ(xn21)a,

and formula(12)easily follows forn+ 1. Hence if
∏n−1

i=0 (ξ1 − q2iξ2) �= 0, thenψξ(xn21) is

a non-zero scalar multiple ofxn−1, and if
∏n−1

i=0 (ξ1 − q2iξ2) = 0, thenψξ(xn21) = 0.
The same arguments show (i′)–(iv′), by using the fact that

ϕξ(xn21) = (−q)n(ξ1 − q−2ξ2)(ξ1 − q−4ξ2) · · · (ξ1 − q−2nξ2)a
ncn. �

4. Co-orbit maps for non-diagonal 2 × 2 matrices

In this section we still restrict to the caseN = 2. The kernel and the image of the co-orbit
map can be described also whenξ is a non-diagonalC-point ofMq.

Proposition 4.1. Let0 �= q ∈ C, and take

ξ :=
[

0 ξ1

0 0

]
,

whereξ1 �= 0.

(i) The image ofβξ is the subalgebra ofO(GLq) generated byx2
21/detq, x21x22/detq,

x2
22/detq. In particular, im(βξ) is a quantum homogeneous space.

(ii) The kernel ofβξ is the right ideal ofO(Mq) generated byτ1 andτ2.
(i′) im(αξ) = C〈x2

21/detq, x21x22/detq, x2
22/detq〉.

(ii ′) ker(αξ) = ∑2
i=1O(Mq)σi.

Again it is more convenient to switch from theO(GLq)-coactions to the corresponding
O(SLq)-coactions.

Lemma 4.2. The restriction ofπ mapsC〈x2
21/detq, x21x22/detq, x2

22/detq〉 isomorphically
ontoC〈c2, cd, d2〉.

Proof. The subalgebrasC〈x21, x22〉 of O(GLq) andC〈c, d〉 of O(SLq) are isomorphic to
the coordinate ring of the quantum plane: the generatorsq-commute, and satisfy no more
relations, as can be seen from standard basis arguments. The two algebras in our statement
are isomorphic to the subalgebra of the coordinate ring of the quantum plane generated
by its quadratic elements, or in other words, the sum of the even degree homogeneous
components. �
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Proof of Proposition 4.1. As before,ψ = (id ⊗ π) ◦ β andψξ = (evξ ⊗ id) ◦ ψ. The
statements aboutβξ translate byLemma 4.2to the assertions ker(ψξ) = ∑2

i=1 τiO(Mq)

and im(ψξ) = C〈c2, cd, d2〉.
As in the proof ofProposition 3.1, decomposeψξ asp ◦Ψ , whereΨ = ((S ◦π)⊗ evξ ⊗

π) ◦ ∆(2) andp is the multiplication map inO(SLq). By definition we have

Ψ

[
x11 x12

x21 x22

]
=
[

ξ1d ⊗ c ξ1d ⊗ d

−qξ1c ⊗ c −qξ1c ⊗ d

]
. (13)

SinceΨ is an algebra homomorphism fromO(Mq) to (O(SLq) ⊗O(SLq), ∗), it is easy to
see from the images of the generators that im(Ψ) is contained in

∑∞
k=0 C〈c, d〉k ⊗C〈c, d〉k,

whereC〈c, d〉k denotes the degreek component ofC〈c, d〉. This space is mapped byp into
W := C〈c2, cd, d2〉, showing that im(βξ) ⊆ W . We have

ψξ(xn21) = p ◦ Ψ(xn21) = p(Ψ(x21)
n) = (−1)nqnξnc2n,

implying that im(ψξ) containsc2n for all n ∈ N0. Similarly,ψξ(xi21x
j

12x
k
11) is a non-zero

scalar multiple of(c2)i(d2)j(dc)k, hence we obtain (i).
SetC := O(Mq)/τ2O(Mq) andB := C/µ(τ1)C, whereµ : O(Mq) → C is the natural

homomorphism. These are graded homomorphic images ofO(Mq) (endowed with the usual
grading). ByProposition 2.4the linear mapβξ : O(Mq) → W factors throughB, denote by
η : B → W the induced surjective linear map. We shall show thatη is an isomorphism (this
is clearly equivalent to the assertion ker(ψξ) = ∑2

i=1 τiO(Mq)). DefineO(Mq)
≤r as the

degree≤ r part ofO(Mq), and writeCr, Br, Wr for the image ofO(Mq)
≤r in C, B, W . We

know from Jordan[5] thatC is a domain, andCr has the basis(8). By homogeneity ofµ(τ1)

we haveCr ∩ µ(τ1)C = µ(τ1)C
r−1. Hence dim(Br) = dim(Cr) − dim(Cr−1) = (r + 1)2

(the latter equality follows, for example from(10)). Since dim(Wr) = (r + 1)2 as well, the
mapη|Br : Br → Wr is an isomorphism. This holds for allr ∈ N0, henceη : B → W is an
isomorphism.

The same arguments work forαξ. �

A similar result holds when

ξ =
[

0 0
ξ1 0

]

is lower triangular.

Remark 4.3. C〈c2, cd, d2〉 andO(S2
q,∞) are isomorphic as rightO(SLq)-comodules. How-

ever, they are not isomorphic quantum homogeneous spaces, since they are not isomorphic
as algebras. Indeed,O(S2

q,∞) is generated byx−1 andx+1 as aC-algebra with unity. Assume

thatC〈c2, cd, d2〉 is also generated by two elements. We may suppose that the generators
are contained in the maximal ideal(c2, cd, d2). Then the images of the generators span the
three-dimensionalC-vector space(c2, cd, d2)/(c2, cd, d2)2. This is a contradiction.

It is not difficult to check thatO(SLq) is a free leftC〈c2, cd, d2〉-module. Therefore
by Takeuchi[13, Theorem 1]the right coideal subalgebraC〈c2, cd, d2〉 of O(SLq) can be
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realized as the space of coinvariants with respect to the left coaction of an appropriate
quotient leftO(SLq)-module coalgebra ofO(SLq) (called a left coisotropic quantum sub-
group ofO(SLq) in [1]). This quotient leftO(SLq)-module coalgebra can be viewed as the
“stabilizer” of ξ.

5. The generic case

We return to quantum matrices of arbitrary sizeN, but assume thatq is transcendental
over the base field. It turns out that if the classical adjoint orbit ofξ ∈ M(N,C) is of
maximal dimension, then the kernel of the (quantized) co-orbit map coincides with the
subset predicted by the classical theory, and is given in terms of coinvariants. For a diagonal
ξ with pairwise different eigenvalues, the image of the co-orbit map also reflects the classical
picture.

Let A be an arbitrary commutative ring andq a unit inA. We replaceC by A in the
constructions ofSections 1 and 2, and define theA-bialgebraOA(Mq), theA-Hopf alge-
brasOA(GLq), OA(D), the right coactionβA : OA(Mq) → OA(Mq) ⊗ OA(GLq), the
βA-coinvariantsτ1, . . . , τN ∈ OA(Mq). We say that anN × N matrix ξ is anA-point
of Mq, if the entries ofξ are elements ofA satisfying the relations(2). Such aξ deter-
mines anA-algebra homomorphism evξ : OA(Mq) → A, xij �→ ξij , and the co-orbit map

β
ξ
A : OA(Mq) → OA(GLq) is defined as inDefinition 2.1. TheA-algebraOA(Mq) is

graded, the generatorsxij having degree 1. WriteOA(Mq)
≤d for the subspace spanned by

the homogeneous components of degree≤ d.
LetK be a subfield ofC, and letq be an indeterminate overK. We shall apply the above

constructions in the case whenA = K(q), the field of rational functions inq, or when
A = K[q, q−1], the ring of Laurent polynomials. When(A, q) = (K,1), thenOA(Mq)

becomesOK(M), the coordinate ring of the space ofN × N matrices overK, and
OA(GLq) becomes the coordinate ringOK(GL) of the general linear groupGL(N,K).

Denote byη : K[q, q−1] → K the K-algebra surjection mappingq to 1. The sym-
bol η will stand also for the induced surjectionsM(N,K[q, q−1]) → M(N,K), OK[q,q−1]
(GLq) → OK(GL).

Lemma 5.1. The elementsf1, . . . , fs ∈ OK[q,q−1](GLq) areK(q)-linearly independent in
OK(q)(GLq), if η(f1), . . . , η(fs) areK-linearly independent inOK(GL).

Proof. Assume thata1f1 + · · · + asfs = 0 is a non-trivial relation withai ∈ K(q). Mul-
tiplying by an appropriate element ofK[q] we may achieve thatai ∈ K[q, q−1] for all i.
SinceK[q, q−1] is a unique factorization domain, cancelling an appropriate power ofq− 1
we ensure that not all theai are contained in the ideal〈q− 1〉. Then apply the mapη to get
a non-trivialK-linear relation

∑s
i=1 η(ai)η(fi) = 0. �

We fix a K[q, q−1]-point ξ of Mq such that the centralizer ofη(ξ) in M(N,K)

has dimensionN; that is, the adjoint orbit ofη(ξ) is of maximal dimension. For a fixed
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d ∈ N0 set

Xd := OK(q)(Mq)
≤d, Xd

0 := OK[q,q−1](Mq)
≤d, Xd

1 := OK(M)≤d,

bd := β
ξ
K(q)|Xd , bd0 := β

ξ

K[q,q−1]
|Xd

0
, bd1 := β

η(ξ)
K |Xd

1
,

Yd := im(bd) ⊂ OK(q)(GLq), Yd
0 := im(bd0) ⊂ OK[q,q−1](GLq),

Yd
1 := im(bd1) ⊂ OK(GL).

Then we have a commutative diagram

Xd ⊃ Xd
0

η→ Xd
1

↓ bd ↓ bd0 ↓ bd1

Yd ⊃ Yd
0

η→ Yd
1 .

Denote byZd
1 the kernel ofbd1. It is the intersection ofXd

1 and the ideal ofOK(M) generated
by η(τi − τi(ξ)), i = 1, . . . , N, by the classical result[7, Theorem 10](the base field isC
in this paper; sinceβη(ξ) is obtained fromβη(ξ)

K by extending scalars, and since theτi are
defined over the field of rational numbers, the cited results of Kostant[7] hold over any
subfieldK of C). Moreover, byLemma 5.2, Zd

1 has aK-basis of the form

Λ1 :=
N⋃
i=1

{η(τi − τi(ξ))w|w ∈ Γ i},

whereΓ i is an appropriate set of monomials in the variablesxkl of degree≤ d − i for
i = 1, . . . , N.

Lemma 5.2. Let R be a finitely generated commutative polynomial algebra overK, en-
dowed with the usual grading. Forr ∈ R write r = r̄ + r̂, wherer̄ is the highest degree
homogeneous component ofr. Letu1, . . . , uN be the given elements ofR, and assume that
ū1, . . . , ūN is a regular sequence inR. Then for allf in the ideal generated byu1, . . . , uN ,
there exist elementsfi ∈ R, i = 1, . . . , N, such thatf = ∑N

i=1 uifi, and deg(uifi) ≤
deg(f), i = 1, . . . , N.

Proof. Apply induction onN. The caseN = 1 is trivial. Assume that the lemma is true for
N − 1. Writef ∈ ∑N

i=1 uiR asf = ∑N
i=1 uihi, whered := max{deg(uihi)|i = 1, . . . , N}

is minimal. If d ≤ deg(f), then we are done. Suppose thatd > deg(f). Without loss of
generality we may assume that deg(uNhN) = d because any permutation ofū1, . . . , ūN is
a regular sequence, see the corollary to[9, Theorem 16.3]. (We note that it is not essential
for the proof to make this assumption, however, it simplifies the notation below.) Then∑

i:deg(uihi)=deg(uNhN)

ūih̄i = 0.

By assumption̄uN is not a zero-divisor modulo
∑N−1

i=1 ūiR, henceh̄N = ∑N−1
i=1 ūigi with

appropriate homogeneous elementsgi, where deg(ūigi) = deg(h̄N), i = 1, . . . , N − 1.
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Thus

uNhN = uN(h̄N + ĥN) = uNĥN +
N−1∑
i=1

uNūigi = uNĥN +
N−1∑
i=1

uN(ui − ûi)gi

=
N−1∑
i=1

ui(uNgi) + uN

(
ĥN −

N−1∑
i=1

ĥigi

)
.

Obviously, deg(uiuNgi) ≤ d, deg(uNûigi) < d for i = 1, . . . , N − 1. Setbi := hi +
uNgi for i = 1, . . . , N − 1, andbN := ĥN − ∑N−1

i=1 ûigi. We havef = ∑N
i=1 uibi

with deg(uibi) ≤ d for i = 1, . . . , N − 1, and deg(uNbN) < deg(uNhN) = d. We
claim that deg(

∑N−1
i=1 uibi) < d. Indeed, either deg(

∑N−1
i=1 uibi) ≤ deg(uNbN) < d, or

deg(
∑N−1

i=1 uibi) > deg(uNbN) implying deg(
∑N−1

i=1 uibi) = deg(f) < d. By the induc-
tion hypothesis onN, there existc1, . . . , cN−1 ∈ R with

∑N−1
i=1 uibi = ∑N−1

i=1 uici, and
deg(uici) ≤ deg(

∑N−1
i=1 uibi) < d for i = 1, . . . , N − 1. Therefore

f = u1c1 + · · · + uN−1cN−1 + uNbN,

where each summand on the right hand side has degree<d. This contradicts to our assump-
tion on the minimality ofd. �

Sinceη(τ1), . . . , η(τN) is a regular sequence inOK(M) by Kostant[7, Theorem 10], we
may applyLemma 5.2to conclude the existence of the basisΛ1 in Zd

1. Our next aim is to
show thatΛ1 can be lifted to a basis of the kernel ofbd . There is aZN -grading on the spaces
Xd , Xd

1, Yd , Yd
1 , determined by a right coaction ofOA(D). This coaction is(id ⊗πD) ◦ βA

for Xd , Xd
1, and(id ⊗ πD) ◦ ∆ for Yd , Yd

1 . (Recall that a coactionϕ : V → V ⊗ OA(D)

yields the direct sum decompositionV = ⊕a∈ZN {v ∈ V |ϕ(v) = v ⊗ t
a1
1 · · · taNN }.) The

mapsbd , bd1, η are compatible with theZN -grading, becausebd , bd1 are homomorphisms
ofOA(GLq)-comodules, hence they are homomorphisms ofOA(D)-comodules, whereasη
maps a monomial inOK(GLq) to formally the same monomial inOK(GL). Writeχ(V) for
the Hilbert series of a finite dimensionalZ

N -graded vector spaceV , soχ(V) is an element of
Z[t±1

1 , . . . , t±1
N ]. In other words,χ(V) is the character of the corresponding corepresentation

of OA(D) on V . Introduce a partial order≥ on Z[t±1
1 , . . . , t±1

n ] by definingf ≥ g if all
coefficients off −g are non-negative. Obviously,W ≤ V andχ(W) = χ(V) imply W = V .

Denote byZd the intersection ofXd and the right ideal ofOK(q)(GLq) generated by
τi − τi(ξ), i = 1, . . . , N. The same argument as in the proof ofProposition 2.4shows that
Zd ⊆ ker(bd).

Proposition 5.3. For all d ∈ N0 we have the following:

(i) the kernel ofbd is Zd ;
(ii) the Hilbert seriesχ(Yd) equalsχ(Yd

1 ).

Proof. Choose a setΩ1 of monomials of degree≤ d in OK(M) such thatΛ1 ∪ Ω1 is a
K-basis ofXd

1. Set

Λ := {(τi − τi(ξ))ŵ|i = 1, . . . , N;w ∈ Γ i},
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whereŵ is a chosen monomial inXd
0 with η(ŵ) = w. The elements ofΛ are multihomo-

geneous with respect to theZN -grading introduced onXd . Similarly, lift eachv ∈ Ω1 to a
monomialv̂ ∈ Xd

0 with η(v̂) = v. We obtain the setΩ := {v̂|v ∈ Ω1} of multihomogeneous
elements inXd .

As we noted above,Λ is a subset of ker(bd), and it isK(q)-linearly independent by
Lemma 5.1. Therefore

χ(ker(bd)) ≥ χ(Zd) ≥ χ(SpanK(q){Λ}) = χ(SpanK{Λ1}) = χ(Zd
1). (14)

SinceZd
1 = ker(bd1), we have thatΩ1 is mapped underbd1 to a basis ofYd

1 . Again byLemma
5.1we have thatbd(Ω) is aK(q)-linearly independent subset ofYd . Thus

χ(Yd) ≥ χ(SpanK(q){bd(Ω)}) = χ(SpanK{bd1(Ω1)}) = χ(Yd
1 ). (15)

It is well known (see[6, 9.2.1, Proposition 6]) that there is a set of monomials in the variables
xij which is a basis both forXd andXd

1. It follows that:

χ(Yd) + χ(ker(bd)) = χ(Xd) = χ(Xd
1) = χ(Yd

1 ) + χ(Zd
1). (16)

Comparing(14)–(16)we obtain that all inequalities in(14) and (15)must be equalities.
In particular,χ(Yd) = χ(Yd

1 ) in (15) andχ(ker(bd)) = χ(SpanK(q){Λ}) in (14), implying

ker(bd) = Zd = SpanK(q){Λ}. �

As an immediate corollary we obtain the following.

Theorem 5.4. Let ξ be aK(q)-point ofMq such that the centralizer ofη(ξ) in M(N,K)

has dimensionN. Then the kernel ofβξ
K(q) coincides with the right ideal

∑N
i=1(τi −

τi(ξ))OK(q)(Mq).

We determine the comodule structure of the image ofβ
ξ
K(q) with the aid of corepresenta-

tion theory. The material we shall summarize below can be found in[6, 11.5](the base field
is C in that book; however, the irreducible corepresentations ofO(GLq) are defined over
the field of rational numbers, so the results mentioned below obviously hold overK and
K(q)). In the sequel(A, q) will stand for either of(K(q), q) or (K,1). Recall thatOA(GLq)
is cosemisimple. The irreducible corepresentations are indexed by the setP of dominant
integral weights forGL(N). Denote byTq(λ) the irreducibleOA(GLq)-corepresentation
associated withλ ∈ P , write χ(Tq(λ)) for its character. Recall that by thecharacterχ(T)
of a finite dimensionalOA(GLq)-corepresentationT : V → V ⊗ OA(GLq) we mean
the image underπD of the sum of the diagonal matrix coefficients. In other words, the
characterχ(T) is the same as the Hilbert seriesχ(V) with respect to theZN -grading ofV
determined by theOA(D)-corepresentation(id ⊗πD)◦T . AnyOA(GLq)-corepresentation
decomposes as a direct sum of copies of the irreducible corepresentationsTq(λ). Given a
finite dimensional corepresentationT , the multiplicity ofTq(λ) as a summand ofT is the
same as the (uniquely determined) coefficient ofχ(Tq(λ)) in χ(T), expressed as a linear
combination of the charactersχ(Tq(µ)), µ ∈ P . We shall need also the fact that the char-
acter of the irreducibleOK(q)(GLq)-corepresentationTq(λ) coincides with the character of
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theOK(GL)-corepresentationT1(λ) (which coincides with the character of the irreducible
rational representation ofGL(N,C) associated withλ). Consequently, if we are given an
OK(q)(GLq)-corepresentationT : V → V ⊗OK(q)(GLq) and anOK(GL)-corepresentation
U : W → W ⊗ OK(GL) such thatχ(V) = χ(W), then the multiplicity ofTq(λ) as a
summand ofT is the same as the multiplicity ofT1(λ) as a summand ofU, for all λ ∈ P .

To simplify the notation we writeT(λ) := T1(λ). TheOK(GL)-corepresentation on
im(β

η(ξ)
K ) decomposes as

im(β
η(ξ)
K ) ∼= ⊕

λ∈P
m(λ)T(λ),

wherem(λ) denotes the dimension of the zero weight space in the dual corepresentation
T ∗(λ), by Kostant[7, Theorem 0.4 and Formula (0.1.6)]. Although the result is stated
in [7] in the language of representations, it can clearly be converted to the language of
corepresentations. Indeed, observe that the character of theOK(GL)-corepresentation on
im(β

η(ξ)
K ) coincides with the usual formal character of the natural right action ofGL(N,K)

on this space, and im(βη(ξ)
K ) is the coordinate ring of the closure of the adjoint orbit of

η(ξ). Som(λ) is the dimension of the subspace of the underlying vector space ofT ∗(λ)
consisting of the vectorsv with (id ⊗ πD) ◦ T ∗(λ)(v) = v ⊗ 1. In particular,m(λ) is
finite for all λ ∈ P , and does not depend onη(ξ) (still assuming that the centralizer of
η(ξ) has dimensionN). The multiplicity ofTq(λ) in theOK(q)(GLq)-corepresentation on
OK(q)(GLq) is the dimension ofTq(λ) (see[6, 11.5.4, Theorem 51 and 11.1.4, Proposition

8(ii)] ), hence the subcorepresentation on im(β
ξ
K(q)) decomposes as

im(β
ξ
K(q))

∼= ⊕
λ∈P

mξ
q(λ)Tq(λ)

with m
ξ
q(λ) finite for all λ ∈ P .

Proposition 5.5. Letξ be aK(q)-point ofMq such that the centralizer ofη(ξ) in M(N,K)

has dimensionN. Then for allλ ∈ P we havemξ
q(λ) = m(λ).

Proof. Denote bymd(λ) the multiplicity ofT(λ)as a summand inYd
1 , and denote bymξ,d

q (λ)

the multiplicity ofTq(λ) as a summand inYd . Obviously,

m(λ) = sup{md(λ)|d ∈ N0}, (17)

and

mξ
q(λ) = sup{mξ,d

q (λ)|d ∈ N0}, (18)

because im(βξ
K) = ⋃

d∈N0
Yd

1 and im(βξ
K(q)) = ⋃

d∈N0
Yd . On the other hand,χ(Yd) =

χ(Yd
1 ) by Proposition 5.3, implying

mξ,d
q (λ) = md(λ) for all d ∈ N0, λ ∈ P. (19)

So our statement follows fromEqs. (17)–(19). �
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If η(ξ) is diagonal with pairwise different eigenvalues, then the stabilizer ofη(ξ) with
respect to the classical adjoint action is the diagonal subgroup ofGL(N,K), and the orbit
of η(ξ) is closed inM(N,K). It follows then that the image ofβη(ξ)

K is OK(D \ GL). In
particular, the multiplicity ofT(λ) as a direct summand of theOK(GL)-corepresentation on
OK(D \ GL) is m(λ). We show that the same holds in theq-deformed case.

Lemma 5.6. The multiplicity ofTq(λ)as a direct summand of theOK(q)(GLq)-corepresentation
onOK(q)(D \ GLq) is m(λ) for all λ ∈ P .

Proof. In the sequel(A, q) will stand for either of(K(q), q) or (K,1). First we describe a
spanning set ofOA(D \ GLq). For anN × N matrix a = (aij ) with non-negative integer
entries and a non-negative integerd set

xad := det−d
q x

a11
11 x

a12
12 · · · xaNN

NN

(the variablesxij are ordered lexicographically). The elements of this form spanOA(GLq),
and

(πD ⊗ id) ◦ ∆(xad) = tad ⊗ xad,

where

tad :=
N∏
i=1

t
−d+∑N

j=1 aij

i .

It follows thatOA(D \ GLq) is spanned by thexad with
∑N

j=1 aij = d for i = 1, . . . , N. Set

Ld
A := SpanA


xad

∣∣∣∣∣∣
N∑
j=1

aij = d, i = 1, . . . , N


 .

Observe that the given spanning set ofLd
A is actually a basis, because after multiplication

by detdq , it becomes a set of linearly independent monomials of degreedN from the standard
basis of the domainOA(Mq). Clearly,

OA(D \ GLq) =
⋃
d∈N0

Ld
A,

andLd
A is a rightOA(GLq)-subcomodule ofOA(D \ GLq) for all d.

Note that

(id ⊗ πD) ◦ ∆(xad) = xad ⊗ ta,d with ta,d :=
N∏
j=1

t
−d+∑N

i=1 aij
j .

It follows that:

χ(Ld
A) =

∑
a∈ωd

ta,d,
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where

ωd :=

a = (aij ) ∈ M(N,N0)

∣∣∣∣∣∣
N∑
j=1

aij = d for i = 1, . . . , N


 .

Observe that the above computation ofχ(Ld
A) is the same whenA = K(q) and when

A = K. It follows that for alld ∈ N0 the multiplicity ofTq(λ) in Ld
K(q) is the same as the

multiplicity of T(λ) in Ld
K. Consequently, the multiplicity ofTq(λ) in OK(q)(D \ GLq) is

the same as the multiplicity ofT(λ) in OK(D \ GL) = im(β
η(ξ)
K ). �

Theorem 5.7. Let ξ be a diagonalK[q, q−1]-point of Mq such thatη(ξ) has pairwise

different eigenvalues. Then the image ofβ
ξ
K(q) coincides withOK(q)(D \ GLq).

Proof. We have im(βξ
K(q)) ⊆ OK(q)(D \ GLq) by the same argument as in the proof of

Proposition 2.6. The multiplicity ofTq(λ) ism(λ) both inOK(q)(D\GLq) and in im(βξ
K(q))

by Proposition 5.5andLemma 5.6. This implies that im(βξ
K(q)) is the whole ofOK(q)(D \

GLq). �

Finally we return to the coordinate ring of quantum matrices overC. The results of this
section have the following corollary in the framework ofSection 2.

Corollary 5.8. Let ξ be aC-point ofMq such that the centralizer ofξ in M(N,K) has
dimensionN. Assume thatq ∈ C

∗ is transcendental over the subfieldK of C generated by
the entries ofξ. Then the kernel ofβξ coincides with the right ideal ofO(Mq) generated by
τi − τi(ξ), i = 1, . . . , N. If in addition ξ is diagonal, then the image ofβξ isO(D \ GLq).

Proof. Sinceq is transcendental overK, we may applyTheorems 5.4 and 5.7for the kernel
and the image ofβξ

K(q). TheC-linear mapβξ is obtained from theK(q)-linear mapβξ
K(q)

by extending scalars toC. Therefore a generating set of ker(β
ξ
K(q)) as aK(q)-vector space

spans ker(βξ) overC, and a generating set of im(βξ) as aK(q)-vector space spans im(βξ)

overC. �

It is straightforward to modify the statements of this section to obtain similar results for
the coactionα.
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